114 research outputs found

    Enhancing Hierarchical Transformers for Whole Brain Segmentation with Intracranial Measurements Integration

    Full text link
    Whole brain segmentation with magnetic resonance imaging (MRI) enables the non-invasive measurement of brain regions, including total intracranial volume (TICV) and posterior fossa volume (PFV). Enhancing the existing whole brain segmentation methodology to incorporate intracranial measurements offers a heightened level of comprehensiveness in the analysis of brain structures. Despite its potential, the task of generalizing deep learning techniques for intracranial measurements faces data availability constraints due to limited manually annotated atlases encompassing whole brain and TICV/PFV labels. In this paper, we enhancing the hierarchical transformer UNesT for whole brain segmentation to achieve segmenting whole brain with 133 classes and TICV/PFV simultaneously. To address the problem of data scarcity, the model is first pretrained on 4859 T1-weighted (T1w) 3D volumes sourced from 8 different sites. These volumes are processed through a multi-atlas segmentation pipeline for label generation, while TICV/PFV labels are unavailable. Subsequently, the model is finetuned with 45 T1w 3D volumes from Open Access Series Imaging Studies (OASIS) where both 133 whole brain classes and TICV/PFV labels are available. We evaluate our method with Dice similarity coefficients(DSC). We show that our model is able to conduct precise TICV/PFV estimation while maintaining the 132 brain regions performance at a comparable level. Code and trained model are available at: https://github.com/MASILab/UNesT/wholebrainSeg

    Digital Modeling on Large Kernel Metamaterial Neural Network

    Full text link
    Deep neural networks (DNNs) utilized recently are physically deployed with computational units (e.g., CPUs and GPUs). Such a design might lead to a heavy computational burden, significant latency, and intensive power consumption, which are critical limitations in applications such as the Internet of Things (IoT), edge computing, and the usage of drones. Recent advances in optical computational units (e.g., metamaterial) have shed light on energy-free and light-speed neural networks. However, the digital design of the metamaterial neural network (MNN) is fundamentally limited by its physical limitations, such as precision, noise, and bandwidth during fabrication. Moreover, the unique advantages of MNN's (e.g., light-speed computation) are not fully explored via standard 3x3 convolution kernels. In this paper, we propose a novel large kernel metamaterial neural network (LMNN) that maximizes the digital capacity of the state-of-the-art (SOTA) MNN with model re-parametrization and network compression, while also considering the optical limitation explicitly. The new digital learning scheme can maximize the learning capacity of MNN while modeling the physical restrictions of meta-optic. With the proposed LMNN, the computation cost of the convolutional front-end can be offloaded into fabricated optical hardware. The experimental results on two publicly available datasets demonstrate that the optimized hybrid design improved classification accuracy while reducing computational latency. The development of the proposed LMNN is a promising step towards the ultimate goal of energy-free and light-speed AI

    Multi-Contrast Computed Tomography Atlas of Healthy Pancreas

    Full text link
    With the substantial diversity in population demographics, such as differences in age and body composition, the volumetric morphology of pancreas varies greatly, resulting in distinctive variations in shape and appearance. Such variations increase the difficulty at generalizing population-wide pancreas features. A volumetric spatial reference is needed to adapt the morphological variability for organ-specific analysis. Here, we proposed a high-resolution computed tomography (CT) atlas framework specifically optimized for the pancreas organ across multi-contrast CT. We introduce a deep learning-based pre-processing technique to extract the abdominal region of interests (ROIs) and leverage a hierarchical registration pipeline to align the pancreas anatomy across populations. Briefly, DEEDs affine and non-rigid registration are performed to transfer patient abdominal volumes to a fixed high-resolution atlas template. To generate and evaluate the pancreas atlas template, multi-contrast modality CT scans of 443 subjects (without reported history of pancreatic disease, age: 15-50 years old) are processed. Comparing with different registration state-of-the-art tools, the combination of DEEDs affine and non-rigid registration achieves the best performance for the pancreas label transfer across all contrast phases. We further perform external evaluation with another research cohort of 100 de-identified portal venous scans with 13 organs labeled, having the best label transfer performance of 0.504 Dice score in unsupervised setting. The qualitative representation (e.g., average mapping) of each phase creates a clear boundary of pancreas and its distinctive contrast appearance. The deformation surface renderings across scales (e.g., small to large volume) further illustrate the generalizability of the proposed atlas template

    Scaling Up 3D Kernels with Bayesian Frequency Re-parameterization for Medical Image Segmentation

    Full text link
    With the inspiration of vision transformers, the concept of depth-wise convolution revisits to provide a large Effective Receptive Field (ERF) using Large Kernel (LK) sizes for medical image segmentation. However, the segmentation performance might be saturated and even degraded as the kernel sizes scaled up (e.g., 21×21×2121\times 21\times 21) in a Convolutional Neural Network (CNN). We hypothesize that convolution with LK sizes is limited to maintain an optimal convergence for locality learning. While Structural Re-parameterization (SR) enhances the local convergence with small kernels in parallel, optimal small kernel branches may hinder the computational efficiency for training. In this work, we propose RepUX-Net, a pure CNN architecture with a simple large kernel block design, which competes favorably with current network state-of-the-art (SOTA) (e.g., 3D UX-Net, SwinUNETR) using 6 challenging public datasets. We derive an equivalency between kernel re-parameterization and the branch-wise variation in kernel convergence. Inspired by the spatial frequency in the human visual system, we extend to vary the kernel convergence into element-wise setting and model the spatial frequency as a Bayesian prior to re-parameterize convolutional weights during training. Specifically, a reciprocal function is leveraged to estimate a frequency-weighted value, which rescales the corresponding kernel element for stochastic gradient descent. From the experimental results, RepUX-Net consistently outperforms 3D SOTA benchmarks with internal validation (FLARE: 0.929 to 0.944), external validation (MSD: 0.901 to 0.932, KiTS: 0.815 to 0.847, LiTS: 0.933 to 0.949, TCIA: 0.736 to 0.779) and transfer learning (AMOS: 0.880 to 0.911) scenarios in Dice Score.Comment: Both codes and pretrained models are available at: https://github.com/MASILab/RepUX-Ne

    Deep conditional generative models for longitudinal single-slice abdominal computed tomography harmonization

    Full text link
    Two-dimensional single-slice abdominal computed tomography (CT) provides a detailed tissue map with high resolution allowing quantitative characterization of relationships between health conditions and aging. However, longitudinal analysis of body composition changes using these scans is difficult due to positional variation between slices acquired in different years, which leading to different organs/tissues captured. To address this issue, we propose C-SliceGen, which takes an arbitrary axial slice in the abdominal region as a condition and generates a pre-defined vertebral level slice by estimating structural changes in the latent space. Our experiments on 2608 volumetric CT data from two in-house datasets and 50 subjects from the 2015 Multi-Atlas Abdomen Labeling Challenge dataset (BTCV) Challenge demonstrate that our model can generate high-quality images that are realistic and similar. We further evaluate our method's capability to harmonize longitudinal positional variation on 1033 subjects from the Baltimore Longitudinal Study of Aging (BLSA) dataset, which contains longitudinal single abdominal slices, and confirmed that our method can harmonize the slice positional variance in terms of visceral fat area. This approach provides a promising direction for mapping slices from different vertebral levels to a target slice and reducing positional variance for single-slice longitudinal analysis. The source code is available at: https://github.com/MASILab/C-SliceGen

    Improved dielectric performance of barium strontium titanate multilayered capacitor by means of pulsed laser deposition and slow injection sol-gel methods

    Get PDF
    A Pt/BST/NiFe/Cu multilayered capacitor was fabricated incorporating a polycrystalline Ba0.5Sr0.5TiO3 (BST) film deposited using the pulsed laser deposition technique. Qualitative X-ray diffraction analysis confirmed a perovskite structure for the deposited BST dielectric films which were fired at various temperatures. No intermediate phase was discernable with a post-annealing temperature of 750°C and highly crystallized thin film was obtained at a post-annealing temperature of 800°C. The fabricated capacitor with a BST film thickness of 665 nm exhibited respectable electrical performance with a dielectric constant, k of 657 and a dielectric loss, tan δ = 0.0137 at room temperature at an applied frequency of 1 MHz. The recorded charge storage density and leakage current density were 4.6 μC cm-2 and 33 nA cm-2, respectively, with ±5 V bias
    corecore